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ABSTRACT 

Let us  consider a  linear program with several 
objective  functions.     The  traditional approach 
has been  either to "tradeoff" by weighting each 
function,  or   if a "trade off" vector cannot be 
provided  to   ignore all  but  the most significant. 
We are   interested   in classes of programs whose 
.Tiembers  possess some common characteristics. 
Examples are sequences of production,   refining, 
inventory problems over time at one  installation. 
If sufficient conditions exist an estimate of 
a "trade-off" vector can be made.    This estimate 
Improves over the sequence. 

A set    X      exists which contains  the solutions 
obtained  by optimizing with  respect to all 
nonnegative  combinations of objective functions. 
A decision maker   is  not   indifferent  to these 
solutions but  can characterize preferred solutions 
A method   is  presented whereby he can direct a 
finite  sequence of solutions,     (x.),  over    X 
towards a preferred solution.     As  the estimate 
of the  "trade-off" vector   improves,  the expected 
length of  the sequence     (x.)    diminishes,  and 
the efficiency of solution   Increases. 



1.     Introduct ion 

In this paper we will   investigate   linear programs with more than one 

objective  function: 

0) Objective  function    z = Q^ 

subject  to      Ax = b 

x > 0 

where    2     is a  p-vector 

x    an  n-vector 

b    an m-vector 

n .   •     _   /   1 k p.' Q    a    p x n    matrix =   (c   ,..,c   ,..,c ) 

A    an    n x m    matrix. 

We will  defi.ie a  preferred  set     S     such  that only   if    x     is   in     S    will   the 

objective be  satisfied.    Under certain conditions a  semipositive  linear transformation 

(x)    on    z    cai be  made c>uch  that     XQx    will  be minimized  and  the minimizer    x 

will  be   in    S   .     We will  define a   set     Z    of weakly  undominated    z    and  show 

that under arbitrary    X 

min    XQx    and z =  Qx   ,   2  s  Z 
x 

will   be attained  by  the same    x   .     Also  for any    x       such  that     Qx       'S  not   in 

1 2 
Z  ,    Qx      can be  strictly decreased  to a  point    Qx      which   Is   in    Z  .    Hence the 

simplex method will   always yield  points   in    Z    as optimal   basic  feasible  solutions. 

Having established that arbitrary    X    will  produce an extreme point    x    from 

a  set of extreme  points which also contains a preferred extreme  point   (assuming 

hopefully  that     S     contains  an extreme  point!) we will   find a     X      which will 

yield  the desired     x     in    S   .     For  this we make certain assumptions,   in particular 

that    X     is  statistically estimable.      If an   immediate  solution   is not  found an 

'    -     "^   v.jte. 



algorithm  is used to search  for the preferred extreme point while minimizing 

the squared deviation of    X    from  its estimate. . 

The assumption that    X     is estimable  is not unrealistic   if the approach 

taken  in this  paper  is applied to a class of problems with certain similarities, 

for example:     production planning over sequential   periods where decisions are 

made at each period. 

2.    The Presentation of the Problem. 

The objectives of many  linear programs can be defined adequately only as 

vector functions.     For example,   in addition to minimizing cost, a decision 

maker might also wish to minimize execution time of a  project; or to maximize 

employment,  etc., or any combination of these. 

Suppose that  there exist    p    objective functions    z.   ■ c x,  k»l,.   .   . ,p   ,  to 

a  linear program subject to the constraint    x e T    where    T ■ fx|Ax « b, x > 0, x e R } 

We will  assume  throughout  this paper that    T    is nonempty and bounded.     In general 

no    x    e T    exists such that    z.     = c x      is an optimum    for all    k .    We construct 

the multiple objective vector function    z = (z.,.   .   . ,z. z )  € R    .    After 

we exclude  the case just mentioned,   it   is obvious that    z    cannot be minimized. 

Although other approaches  can no doubt be taken,   it  seems both legitimate and 

consistent,   since  the subject   is   linear programming,  to transform    z    to a 

scalar function which  lends   itself to minimization. 

We define a  pair of both physical  and mathematical   significance:     the decision 

maker     (DM)    and  the  linear program problem solver     (LP)   .     First, mathematically, 

DM    is a  function from    RP    to    R    with value    Xz    transforming the components 

of    z    by semi positive  linear combinations to a  scalar objective function.     LP 

is a correspondence from    R    to    T  :   given a  real  valued  linear objective function 

toptimum   is  used  to mean maximum or minimum.     In  subsequent   sections  the minimum 
problem only   is  treated. 



DM(z)   ,   x"  e LP(DM) cT     such   that    DM    Is  minimized.     We call   such    x*    an 

optimal   solution.     If the  decision maker   is  satisfied with  some optimal   solution 

and terminates the problem,  the  solution  is defined to be preferred.     If he   is 

unsatisfied but no feasible optimal  solution satisfies  him more,  then the solution 

is almost  preferred.     Clearly,  the  latter definition   implies that: 

Given the existence of one of the solutions, 

either a  preferred solution or an almost 

preferred  solution exists,   but  not   both. 

We shall   prove  in Section k that  under certain conditions one of these solutions 

does   indeed exist.     A  solution which   is either  preferred or almost  preferred 

will   be abbreviated to a  POA^P solution.    No  implication has been made as  to the 

uniqueness of any solution,  only to the uniqueness of a set of solutions. 

Secondly,  physically,   the  problem thus  far  stated   (l)  can be decomposed 

between    DM    and    LP  .    We can consider that    DM    generates by some means a 

vector of weights by which he  constructs a   linear combination of objective 

functions.     He has  then produced a  linear program for    LP    to solve.     LP  , 

characteristically a  computer,   can produce an optimal   feasible solution by 

conventional   linear  programming  techniques. 

The concept "satisfied" is unmathematical intuitively and undefined explicitly. 
In the light of the assumption DM2 appearing at the end of the section we can 
define  the  following: 

(i)     DM    is sat isfied   if he does not specify any vector    d   ,  given    x  . 
(ii)     DM     is unsat isfied   if  he specifies  some  vector    d   ,  given    x   . 

(iii)     DM    is unsatisfied but  no    x'     satisfies him more  if he specifies  some 
vector    d   ,   given    x   ;   but no    x'     exists  such  that    d^' ,S)   < d(x,S)   . 

Both  the  decision maker and  the  decision maker  function will  be  called     DM    for 
notational   simplicity.     Similarly,  both the  linear program problem solver and 
its  correspondence will   be  called    LP  .     No ambiguity will  occur. 

ß w 



(Recall  that   T    is nonempty and bounded.)    DM    now evaluates the solution. 

If he   is satisfied he terminates the problem;  otherwise he tries a new vector 

and sends  the data back to    LP  . 

Suppose a common unit  could be established   in which the value of    z.     would 

be expressed.    Then,   in the above example,    DM    could assign    #.     units of value 

to one unit of cost,    #-     units of value to one unit of execution time, etc., 

and all  the components would be  transformed to a  unique additive measure    p, 

in units of value,    p. s cy'z   , where    a    is well  defined and constant.     We shall 

require that    X    be normalized so    DM(z) - a'z/jlall    » which would then be 

completely determined.    The problem would then  reduce to a conventional   linear 

program.    We will  assure  that  the decision maker cannot establ ish such a unit 

of value. 

We can now define  (l)  more explicitly: 

(2)     Find     (x,  DM)   ,  x e T   ,  DM e <{2k]>+t such  that    x e LP(DM)    and    x POAP . 

Equivalently: 

(2') min DM = XQx 
x 

subject to Ax = b 

x > 0 

x POAP 

P 
for each X > 0 , I X. = 1 

k=l  K 

where Q = (c1,. . .,ck,. . .,cP)'  . t 

"For each X" seems to imply that the set of X  is at most countable, which is 
not true. However in Section 6 we will show that there exist a finite number of 
sets A. , and any X e A. will generate the same solution set {x} as any 

X' e A- • Thus "for each X" is to be interpreted "for any X from each A-'1 

tt,. '<[*.}>" reads "the convex hull of the set of all  zk." 



We will   approach   (2')  eventually as a  two stage problem:     firstly,   for some    X   , 

minimizing    DM  ;   secondly,  determining the given so'ution's    POAP    properties, 

and  revising    X     if necessary.    Call  then the  first  stage,   i.e.   (2'),  neglecting 

the    x  POAP    condition:      U11). 

In Section 3 we will   prove that  solutions  to   (2,,) exist under certain 

conditions,  and  that  the  simplex method will   find  a  subset  of  these  solutions. 

The metiiod proposed  for finding a solution has   little practical   significance 

for a  single problem,   since  the value cf    X    needed  to obtain a    POAP    solution 

is  known only after  the     POAP    solution has  been found.     (This   is clear  from 

the definitions of preferred and almost  preferred.)     However,   if we have a 

class   (?    of problems possessing certain properties, and the  first    T-l     sequential 

problem can be solved more efficiently when    LP    has available the values 

X     ,  t=l,...)T-l   ,  used  to obtain the  respective    POAP    solutions,  than otherwise. 

The   required properties  are: 

th 
»_   oe  tne    r 

POAP    solution. 

Let    C    e C? be  the    t sequential   problem of form (2')  possessing a 

a) Let    T    £ T    for    C     •    Then    0 T    »* 0    where t     is  the   index set 
t t t.    t 

{1.2,...}   . 

b) Let    x    = x e T      for    C    .    Then    x    e Rn V t and    Z x    e Rn   • 
L L L L. . L 

c) If    x       is preferred  for some    C     ,  and   if    x      is optimal   for some 

C^i   >  t'^t,  then    x       is preferred  for    C   ,   .    Equivalently 

n ^ 
c')    There exists a  domain    Sc R      such  that   if optimal     x      e S     it   is preferred, 

d) z     is  common  to    C     ,  V t 

e) The distribution of T  is such that a maximum likelihood estimate of 

X exists.  This estimate is the mean of X  over t . 

ß   m 



Now we require some assumptions on    LP    and on    DM .     Our recognition of 

LP    as a  linear programming  problem solver should  be sufficient:    we  know that 

it will   read and   interpret   submitted data without error, that   it will   produce 

an optimal  feasible solution with certainty,  and  that   it will  yield    DM    the 

results with typographic perfection.     As  for    DM    we assume the following: 

DM1   (Recognition).     DM    can always  recognize an optimal  solutions    x e S    to be 

preferred.     He  can always  recognize an optimal   solution    x ^  S    to be  not 

preferred. 

DM2   (Direction).     Given an optimal  solution    x ^ S   ,   let the distance between    x 

and  the closest point   in    S    be    d(x,S)   .    Then    DM    can specify a vector    d 

such  that    d(x + ed,  S)  < d(x,S)     for arbitrarily small     e > 0  .     No 

knowledge of any point     s  e S     is assumed. 

Using the assumptions    DM   will  be able  to direct    LP    towards    S    and 

terminate  if    LP    produces    x e S  . 

3.     The Existence of a   Solution. 

We define a vector    z       to be weakly undominated  if    z »^ z in the domain 

of    z  .    This definition will  enable us  to  replace  the scalar "minimize" by the 

vector "find weakly undominated"   in the vector optimization problem: 

(3)     Find weakly undominated    z = Qx 

subject  to    Ax = b j 
! or    x e T 

x > 0) 

where symbols  are  defined   in   (l) 

"z £ z0"    reads    "it   is  not   true that    z.   < z.0   ,   k=l ,p   ." 



We can P.TW find a set of x which will solve (3). 

Let z      be any vector z such that z.     < z. , for any z  in 

the range of x .  Then z      is weakly undominated. Thus we can produce 

p such weakly undominated vectors, each of which is minimal in one component. 

How can we produce the inverse images of such z.     ? Consider one such Problem- 

en) min   z = Qx , x e T 
w.r.t. k 

Clearly    z, ,   ,   k'   ^  k   ,   can adopt  any value and   is   independent of  the minimizing 

process.    Hence   (4)   is equivalent  to 

(5) min z.   = c x   ,  x  e T 

which   is a   linear  program.     Hence  by  solving     p     linear programs  of  form  ^5) we 

can find    p    basic  feasible solutions  to  (3).  each of which has  the minimal 

/   \       k* 
property  in a different component.     Call  a  feasible solution to   (5)    x 

("Solution"   is hrre used according to the   linear programming convention to 

mean a value of    x    at which  the objective   is minimized.     No ambiguity  results. 

k" k* 
Al'   solutions are assumed  feasible.)    Let     X      = {x    }   .    From wel 1-knovsn results 

!<* 
X is convex. 

Now to dispose of the simplest case: 

** k* 
Theorem 1   (3)  has a minimum solution x   if and only if fl X  ^ U 1 and any 

point in the nonempty intersection is such a solution. 

Proof      Suppose x   is a minimum solution to (3).  Then z  = Qx   is 

not only weakly undominated but also a minimum.  Hence z  < z , x e T . 

It follows that z ' ' <i 2. , k=l p . so x'  solves (5) for 

,'—1.        KJL 

each of the components, and x  = x  , k=l p . Consequently 

x,W e Xk'" for all k , and x"' e 0 Xk,% .  Suppose HX " ^ 0 . Let 
k 

f   m 
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x0 e (IX      .    Then    x      solves  (5)  for each of the components, 

Qx0 ■ z0 < z   , x e T  ,  z0    is a minimum vector and    x      solves   (3) 

to a minimum,    x      was chosen arbitrarily from    HA    , so any 

x0'  e OX1**    solves  (3).  /// 

Now a minimum solution to  (3)  seems the best we can hope for, and   indeed 

will   solve  (2')  provided we can show that   it   is    POAP .    Theorem 3 will   give us 

that answer.    Meanwhile  let  us consider the case where    QX      = £) .    We have 

shown that there  is no minimum solution to  (3). 

k* 
Now we have shown that a  set    UX       of solutions  to  (3) exists, and we 

would   like to discover,   if possible, a maximal  such  set  from which to select 

some preferred or almost  preferred    x .    Also,  since we have the simplex method 

in mind, we would  like to know  if we can move  from    x    to a better    x'   . 

We will   show that this maximal   set    X      exists and    x    e X       is a solution 

to    min X Ox   , x e T   ,     for soc^e    X > 0 .    We would  like also to be able to 
x 

specify    X    and thus generate a  specific solution.     If the  rows of    Q    are  not 

positively  linearly   independent we can find some    X      such that    X Ox = 0    for 

all    x  e T  !     Legislating this trivial  solution out of existence we  require: 

k k 
Positive  linear  independence of    c     ,   i.e.  Z X|C    =0,Xk>0=»X"0    . 

k 

We can now construct a closed convex cone Y « { <k(i,> , k > 0 , a scalar } , 

k       *   * .  * X 
the minimal cone containing c . Let X = fx j x  minimizes c x ■ z  , x c T , 

for some c e Y ] . Clearly x  e X  for all  k . Also for any c e Y 

there exists the corresponding x  by the compactness of T . 

Analogously to linear programming we can say that x'  is better than x  if 

z' = Qx' < Ox = z . 



Theorem 2 If  there exists    x      ^ X'    ,   x  e T   ,     and    z      :=  Qx       ;     where    Q 

is a  matrix of    p    positively   linearly   independent   rows,   the     k 
.    . k        , . 0 00   /. 0 00 » 

row being     c     ,   there  exists     z    < z       (i.e.   z.     < z. ,  V  k) 

such  that    x    e X', 

00 *'- 
Proof x      ^  X   . 

00 k  00      ,        , 
zk      =  c x       ,   k =  1,.   .   . ,p   . 

(6)       Referring  to  (5):     z^0 > zj"' else    x00 e X^ c x" . 

u i k 00 if00. p    hyperplanes    c x =  z, pass   thiough    x       .     Hence   there 

,        .  ,    ,. k 00      .   , 
exist     p    closed  hall-spaces     c x < z. with  nonempty   intersection 

d?  ,  and,   by  the  positive   linear   independence of    cx    and  the 

compa ctness  of    T   , «Jc.   has  an   interior.     (Intc^)   0 7^0    by   (6). 

It   is   necessary and  sufficient  to  show  that  there  exists    x     e 

(intc^)  P T     satisfying    x     e X       since    x    e     (intcif)  H T =* z    < z 

Select  a  point    x in     (intt>Ä)  0 T  .     Defined     =  fx|c x < z. 

Vk  }   .     Then-Jt     H T c   (intu^)  0 T   .     Construct  a   sequence 

x       ,   x     ,. .x   '     such  that     (intc^)  0 T ^J?    0 13.   .   . zxxl1   fl T 3 

•   •   'vL    ,   T    are  closed,   so**-     0 T     is closed. rJL   P T     is a 

decreasing  monotone  sequence  of  sets  so     1 imc>C.   p T =  0     (<xl. 0 T)  = 

0        0 ,    '"" o^1 

x.  . x,   lies on a supporting hyperplane, since x.  lies on the 

boundary of T , for if not a smaller set could be found containing 

points o^ "oi and T .  The boundary of T  Is a set of hyperplanes. 

0 
So x.   must lie on at least one. 

Construct p - 1 other different sequences yielding x.  (k~l,..,p) 

arbitrarily close and lying on the same hyperplane.  Elther all x. 

are different or 1 imcA. P T  is unique over all sequences.  If 
i-«aD 

O O O OOj. o,_oA o 
x.     =  *9     =   •   •   -x,   .   .   .x      =  x     ,   for any    x    +AX€T,z    +Az>z 

Hence at x  , z attains a local minimum.  By the linearity of the 

*    m 
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space and every objective  function,  a  local  minimum  is global.     Hence 

x0 e Xk*    (for all    k) c X"  . 

If all   x.       are different we will  find    a    such that 

i     o 
a- z.       = a constant 

cy'Z        - z  , a  constant vector 

where Z      =  (z.   ,.   .   . ,r 0) 
1 P 

.,,0/0 o o% 
Let    Zk    -  (zk    ,  zk    ,.   .   .,zk )     . 

Then    Q,"   (Z0  - Z^) = 0  . 

Transposing,   and by Parkas1  Lemma 

(Z    -Zk)y-0,0.y<0    has no solution 

therefore     (Z     -Z,   )la-0,astQ    has a solution 

0 - a*   (Z0 - Zk
0) = a'   (OX0 - QXk

0) 

r u          v0       /    0        0 0\ [where    X    =   (x.   ,  x.      x    ) 

X 0 =   (x 0      x 0 x 0)1 k k     *    k    »   •   •   • »Äu  ' J 

- a'QCx0 - xk
0)   . 

But     (X     " X.    )     is a    (p  - l)   - tuple of vectors   in one supporting 

hyperplane,   so    v'CX    - X.   ) = 0     is  the equation of the hyperplane, 

v »* 0 .    Therefore    Q'o = v ^ 0  ,  and    & t 0 .  a ^ 0  t a 4 0 * a > 0  . 

0       - 0 
Now    o'Z    = z     implies  that at each    x.        is attained the value 

z ■ Q-'QX   ,  a  constant on the boundary hyperplane;   therefore at 

x.        is attained a   local   minimum.     By the previous argument   It   is 

k 
also global.     a'Q.    'S a  semipositive  linear combination of    c    , hence 

0        ■>'.- 
c/Q e V  .     Consequently    x.     e X     . /// 

from the conditions of Theorem 2 falls out  that 

Corollary  1    X"     is  the  set of all   solutions  to  (2M) 

Proof X    = {x  |x    minimizes    c x = z     ,   for any    c    e Y   ,  x e T} 
""'"' A. 
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By the  convexity of    Y   ,  cX = r X.ck   where    ck    is an extreme  ray of 
k 

k 
Y    and     >-|< > 0   . ^ > 0  .   But     c      are the   independent   rows of    Q  , 

X       P k k 
so    c    = Z    X.c     where    X. ,  = 0    if    c       is dependent.     So   x" 

k=1     K K 

minimizes    XQx   ,  X > 0   ,   x"    also minimizes    aXQx    where    a     is a 

scalar > 0  .     Let a  =     ,  and    x"     is a  solution to  (2")   . 

I X. 
k=1   K 

Hence X"  is the set of all solutions to (2'') . /// 

We have now found X" , the set of all solutions to (2' ') .  We show that 

(2'') then is equ:valent to (3) and a search for a weakly undominated z replaced 

by a simple linear program.  Let  Z be the set of all weakly undominated z . 

Corollary 2 x e X"  if and only if z e Z . 

Proof      Suppose x e X" .  Then either 

(i) at least one component of z  is minima'. Then z     is weakly 

undominated; or 

(ii) cy'z  is minimal for some o > 0 .  Suppose there exists some 

z < z . Then ty'?.    <  ^'z  which contradicts the hypothesis. 

00 
Suppose  z e Z . Then z < z  ^ Z and x e X  by Theorem 2.  /// 

Thus far we have produced a set of solutions X" , each element of which is 

equally satisfactory. The choice will be narrowed by restricting (or attempting 

to restrict) x to a preferred set  S .  Now that we know that the search for 

x e S can be done by linear programming techniques we must assume: 

LP1 (Finiteness). Let  x  e X " be an optimal solution. Then x  e X" , another 

optimal solution, can be produced in a finite number of steps. 

k.     X' and the Preferred Set 

In Section 2 we have assumed the existence of a preferred set  S . We also 

f  w 
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constructed an interaction between DM and LP , whereby LP proposes optimal 

solutions to a linear program, and DM accepts them or tries to steer them 

towards S (assumptions DM1 , DM2 ). In Section 3 we showed that the set of 

points that LP can propose is indeed that set of points from which DM wishes 

to select a preferred point. Now what about S ? 

In this paper we choose not to make any assumptions on S . Such assumptions 

would involve economic concepts such as insatiability of preferences, convexity 

of preferences, etc., which are not appropriate here. However, it is important 

to grasp that c.1 though LP has a linear objective, to find some x e X , DM 

tias no such thing.  Now suppose that we have a set X  obtained from solving 

(2'') or from solving (3), we will show that a complete solution to (2') exists. 

Before proving the next theorem we require a lemma: 

Lemma X* » <X"> 0 bdry T 

Comment We proved in Theorem 2 that X c bdry T . We now require that 

Proof 

JL, 

X  be simply connected over the boundary i.e. that there be no 

holes.  In Theorem 3 we will have sequences of solutions starting 

in X  and ending In X . These sequences must stay in X 

Let x  e bdry T . Then 

(A) x ■ E y..x{ , where fi}  is the index set of all extreme points 

of T contained in the supporting hyperplane containing x , and 

p. > 0 , E p,. = 1 . 

Let x e < X > . Then 

(B) x = r X. x.  . where  {j}  'S the index set of all extreme points 

of T  in X' , and X. > 0 , I x. = 1 

But the extreme point representation of any x e T  is unique, and 

if x0 e < X > (1 bdry T then  if |i. > 0 . X. = pi. .  Similarly 
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if  ^b > ^ » ^L- ~ M-b •  Thus the extreme points of (A) are the 

same as those of (B) and x = Z^,. x." .  But all  x. % , i e fi} 
t  i 

minimize 0/  Qx for some &  .     Hence x  also minimizes o- Qx , 

o   * o   " o     *        o 
and x e X  . Suppose x  e X  . Then x e <X >  and x e bdry T . 

So x  e <X > 0 bdry T  and  X" = <x"> 0 bdry T . /// 

Theorem 3 will show under what conditions a preferred solution can be found. 

The effects of pathological circumstances, those in which the linear program 

and the decision maker are opposed, will become clear. 

The lemma has shown that X   is a simply connected part of the boundary 

of T , intuitively a partly open convex set without an interior.  |f then we 

required conditions for a preferred solution to be produced, it would seem 

immediate that would suffice firstly:  convexity of S , and secondly: 

X 0 S ^ 0 .  However Figure 1 shows a case where these conditions are insufficient 

Using the decision maker's axioms, and starting from the left of the Figure, almost 

preferred solutions are encountered twice, at x. and at x_  before a preferred 

solution is reached at x_ .  Clearly the choice between x. , x. , or x_  is 

determined by the original trial solution and the direction of search. The 

situation is pathological because we do not expect a decision maker to be satisfied 

with a solution that is nonoptiiiaK 

Fig.  1 

* ■m 
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Even  if the diagram  is   less pathological   (Fig.2) there   is  still  and almost 

preferred solution at    x.   .    The third condition on    S    which will  guarantee 

a preferred solucion  is  that the asymptotic cone of    S, A   (S)   ,  contains    Y 

Fig.  2, 

This implies insatiability of preferences in the direction of every possible 

optimizing vector (Fig.3). That it is insufficient merely to have nonempty 

intersection of the cones is shown in Fig. k  ,  where there is an almost preferred 

solution at xc .  It is evident that these three conditions are not necessary 

for a preferred solution - merely sufficient. 

Fig.  3 
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Fig.     ^4. 

Theorem 3 Let    X       be  the   set  of solutions  to   (3).     Let    x    e  X"    be 

any  such  solution.     Then 

(I)     If    S     is  convex,   X'   OS ^  0    and     Y c A(S)    a  preferred    x 

can be  produced, 

(ii)     If    X    OS =  0    an  almost  preferred     x    can be  produced, 

(iii)     Otherwise,   either a  preferred or an almost  preferred    x    can 

be  produced. 

Proof (i) Suppose x ^ S .  The vector d  can be specified by DM2 , 

and k > 0  is a scalar. Let x + k d e S be the closest 

point of S to x .  If x + k d ^ X  let x  be the 

* O OO OiOO* 
closest   point  ofX      tox+kd     .      Ifx+kdgX 

let    x    = x    +    k  d     .     Suppose    x     ^  S   .     By  the convexity 

of     S     there  exists  a  unique  point     x    +    k d     e S    which 

is the closest point of § to x  .  Ifx + kd^x + kd 
1 .1 .1 o .0 

a  hyperplane  separating    X      from    S    could be defined,   for 

by  the   lemma    X       is a  simply connected  subset of a  convex 

body either wholly contained   in    S    or  closed with  respect 

to    S     since     Y C A(S)   .     Hence  the  points    x    + k    d      are 
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not   in    T  .    Also    dCx1 + kV,  x1) <d(x1, x0 + kV) 

< d(x    + k d   ,  x )   .    Consequently a  sequence of pairs 
• ■       1 *      1       '      1 

(x  , x        + k      d      )    for    i > 1    can be defined.    Suppose 
I * *      1 

x    ^ S  .    Then the sequence   is countable and    d(x   ,  x        + 
*      1       *       1 * 

k  d  )  is strictly decreasing.  Hence 1 im x e § 
l-co 

and some    x        arbitrarily close to the  limit   is   in    X    OS. 

Let    x=x       ifxeS.orx        otherwise.    Then by 

LP1     x       can be  produced   in a   finite  number of   iterations, 

and by    DM1 it   is  recognized as  preferred. 

(ii)    Let    x    + k d      be defined as   in case  (i).    Construct a 

.   •i /   i       ' -1       ■ i-1 . i-1\ simrlar sequence    (x  , x        +  k      d       ).    Since  there   is 

it 
no convexity assumption on    S    and since    X    OS * 0  , 

„. . k .   i^M k+1   ,   . k+1 .k+1 _.. 
there may be  some      x+kd-x        +k      d        .This 

implies  that    x    = x        -...= x        =...,   i  > 1   .     Let 

ko k        k+1 k+i 1JF      ko     , 
x      ■ x    =x        =...= x =....     If    x        does not 

.       ^L J/   '       i+l       i ' -1 J '-K     . .i exist then    d(x  , x        + k      d       ;     is a sequence strictly 

decreasing to some  limit«^   > 0  .    As    d approaches^*-,  x 

approaches  some  limit    X        since    X       is bounded.     Let 

x    = x        or    x        whichever   is defined.    Then by    LP1  x 

can be  produced   in a  finite number of steps, and  by    DM1 

it   is  recognized to be not  preferred. 

(iii)    This  case  follows  case  (ii)  except   that either 

a) x    e S    or 

b) <A =  o    may occur  since    X    CIS  ^ 0  .     Referring  to 

case   (i)   ,   if either a)  or b)  occurs a preferred 

solution   is  the outcome;   otherwise,  as   in case   (ii) 

the  solution   is almost  preferred. /// 
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The  converse to Theorem 3   is  trivial: 

•X. 

Corollary 3  If a solution to (2') exists then it is some x e X" . 

Before attacking the method of solution proposed in Section 5, the reader 

is cautioned to recall that any x e X  Is a solution to (2'') , given the 

appropriate X . However, the simplex method produces only extreme point 

solutions^  If S contains an extreme point LP will find it, but if S contains 

no ex reme point and  S P X" / 0 the simplex method will have LP oscillating 

across  S  indefinitely.  Clearly DM must take some linear combination of 

extreme points himself in this case. 

5.  The Method of Solution 

If we accept the assumptions and conditions on T , S , Q , DM , and LP 

so far discussed we have shown that a solution x POAP can Indeed be found. 

Without loss of generality we can restrict ourselves to the case in which S 

contains an extreme point of T .  If S does not contain an extreme point DM 

can terminate when by DM2 he must reverse direction; and If an almost preferred 

solution is produced DM can terminate when LP can propose no solution In 

the direction specified. 

By solving (2') we are trying to define an optimum in terms of the decision 

maker's preference, and then to find a function which will yield this optimum, 

rather than to find an optimizing function and insist that the decision-maker 

like It. We are granting him intuition and knowledge that he has withheld from 

the computer, unwittingly or otherwise—after all. It was this intuition and 

knowledge that made him a decision maker In the first place. 

Why then bother with  X at all? A very simple approach could be select 

' " —- «to. 
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any extreme point x
1 

, rejecting it and selecting 2 
X and some direction 

of improvement d 1 such that 1 2 1 
d (x - x) > 0 , and continuing until no 

n+l 
X such that can be found. Then n 

X is clearly optimal 

by the convexity of T • 

If we follow this approach, though, we find that the solution to the tth 

sequential problem is a lengthy in computation and as tedious and demanding 

on the decision maker as the first problem , even though the solut ions may be 

very close. For example ; in January a manu facturer or automobiles decides, 

after investigating many extreme point solu t ion, that i t is preferred to 

produce 700 Rolls Royces and 400 Bentleys. Now in Februa ry he notices that 

management policy remains the same a nd that all his unit costs and unit profits 

are in the same proportion. Consequently , he decides that rather than reinvestigating 

all the extreme points anew he wi ll again select 1 
X = (700,400) . However, 

he d iscovers very qu ickly t hat either 1 
X i s infeasible for February, or t hat 

it is not optima 1 : he could fi nd some better 2 
X which is preferred. He 

realizes that conditions (a) throu gh (e) of Section 2 hold. He sees that the 

January problem could have been solved by (2 1
) for some "A.

0 
, and if he knew 

Ao , (2 1
) us i ng Ao a nd T for February would offer him a so l ution close to 

x 1 that would be both feas ibl e and opti n~l. Further reflection, and an 

unde rstanding of linear programmi ng , tells him that in general "A.
0 

is a point 

in a closed convex set A and a ny A€A would have solved the January problem. 

Also, ca I I i ng A in January AI , there must be some A2 for February, and it 

i s i med ia t e t ha t AI and A2 are not necessarily equal. It would be folly 

to select arb i trar ily AI from AI and to hope that AI would also be in A2 

But now he recal l s condition (e) wh ich tells him that there is some ~ which 

is mos t 1 ikely to be in the intersection of many of the At , and that ~ 



is the mean of all successful At to date. 

We can find a way to estimate ~ 

1 sequential problem. We start with Al , 

Suppose we are solving the first 

A , and 
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produce an x
1 

which minimizes A.!Qx 

an arbitrary estimate of 

1 Suppose x is not POAP. We modify 

to 

minimizes 

and produce a n 
n 

A 1 Qx is POAP 1 

2 
X which min imizes 

n 
unt i 1 x 1 which 

best value of 

When we solve the second problem clearly the 
nl 

with whi ch to begi n is Al , since all the sequential 

problems are of arne class. If the n the solution to the second problem is 

, we will beg i n the third problem using 
n 

A~ = HAl 1 attained using 

t+lth 1 t: n. 
Similarly the problem would be entered using At+l = ~ L: ) 

l:o: A. 
t. 1 t 

1= 

(If we were to waive the as s umption of time invariance of s the mean J: 
I 

might be a weighted mean.) As t becomes large ~t approaches \ in Cesaro 

limit, and ~ is the maximum 1 ikelihood estimate of A which will minimize 

A.Qx and produce a POAP x • 

Consider the th t+l sequential problem. The first solution offered 1 
X 

minimizes AtQx over Tt+l • Henceforth the subscript on t will be dropped 

whe re no a mbi guity can result. If 
1 

X is preferred the problem is solved and 

remains unchanged for the t +2th problem. 

that 
1 2 1 

d (x - x ) > 0 

6. The Generation of 

is to be found . 

i+l 
X 

If 1 
X 

The problem to which i 
X is the solution, using 

min z 

Subject to Ax = b 

X ::::_ 0 , 

A.iOx = z 

is not preferred, 

~ i . 
1\ , IS 

2 
X such 
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Rearranging columns so that  the first    m    columns are the basis    B.    we have 

C. 

_z. 

where  subscript    B    corresponds to basic variables and subscript    C    corresponds 

to nonbasic variables.     The solution    x       is  found by premult iply ing both sides by 

(7) 

B. 0 
i 

-X'k     B^1     1 
i 

I Bi     Ci 

0 XY   -xV   B^C 

yielding 

i i 

r    "I v 
I 

L   'J 

B.  b 
i 

z-X'Qg  B^b 
i 

x'   =  (B^b   ,  0)   . 

Now suppose that    DM    specifies direction vector    d =  (dD     ,  dr   )   .     That   is  to 
.    . . I I 

say that    d(x        -x  )  > 0    can be considered an additional   constraint to the 

problem.     Of course,   If we were to try to  resolve  the problem using  this constraint 

we would  succeed merely   in shifting    x      an   infinitesimal  distance   In the  required 

direction;  but we will   use the constraint  to determine which variables can enter 

the bas is    (B.^.)   for     x x   i + l 

There   is no further need  to maintain  the   iteration affix    (i)     everywhere, 

since  henceforth the analysis will  be based on solution    x    .    We   rewrite  (7): 

(7') I B-'C XB 
V'b    1 

0 x^-Qg e-'c). -xc. 

B 

_z-)iQBB''bJ 
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Theorem h I + 1 e 
If a   solution    x exists     x will  enter the  basis     (B- + i)     ft>r 

1+1 . e -1   e 
x only   If    d-   -dB    C    > 0   , whert    e    denotes  a  column of    C   . 

Proof Rewrite    d(x       -x )  > 0 

,   i+1        ,   i as     dx > dx    . 

• i 

we  have     x     =  (B- b,0);   yielding 

dx   -  s  =    dRB    b +  e   (e>n)   ,  where    s     is  a  nonnegative  slack variable, 

Add  the  constraint   into   (7')   ,   yielding 

(8) I B^C 0 

k dc -1 

|o XCCL-C ̂ B^C) 0 

x„n 

>- -j   _i 

B    b 

dpB'Ve 

Lz-XQ^B^bJ 
^ 

Reducing (8,1 to canonical form by premul t ipl y ing both sides by 

-d, 0 

l 

we have 

(9) 

o 

0 

B C 

W c 

x(Qc- QßB c) oj 

o" "XB1 

1 xc 

0_ _s J 

B b 

Lz-XQßB'^J 

The    m+1     row of   the  system  (second   row  of  the matrix   (9))   is   infeasible since 

the  value of  the   nonnegative slack    s     is     -e   ,   (e>0)   .     To  restore  feasibility 

Ke 
x      must  enter  the  basis with  positive  value;   hence    d-   - dB     C    > /// 
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e -1  e i+l 
Corollary k    If    d-   - d-B    C    < 0    for all     e=m+l,...,n    then no feasible    x 

can be  found  that will  minimize   (2 ')  subject  to    d(x      -x ) > 0 . 

So corollary k can be  the criterion by which the decision maker determines 

x    to be almost preferred and terminates. 

e 
Now suppose  that  some    x      can be  found to enter    B_,   .     As    e     increases i + l 

Q 
so does    x      until   some    x     ,tA = l,...,m   ,   is  reduced to zero and   is  driven out 

of the basis. 

x       is  the  solution  to  (2'')   using  a  given    X    .     Since we are  going to modify 

X       to produce our  next  solution    x , we must have some properties of    X  . 

P 
Let    A = {X|X.>0   ,     Z    X.=l} 

K k=l     k 

Let X  be some value of X such that x  minimizes X Ox i x eX 
V ^L V p, 

Let     A    = fXlx      minimizes    XQx   ,  x eX  ]   ;   X  eA 

Theorem 5 The  number of distinct    A       isfinite.    A      is closed and convex. 
 ^ v v 

A = UA       •     No    A       is  disjoint. 
v v 

v 

Proof Suppose    x       is an extreme  point  of    T  .    The number of  extreme 

points   is  finite.     Suppose    x       is  not an extreme  point,   i.e., 

x       is  a   linear combination of extreme points.     From the  proof of 

Theorem 2,   given a   linear combination of extreme  points     x 
U 

supporting    T   ,   (DB  *     .   ß >0   ,  IB  =0   .  the set of    a    as defined 

in Theorem 2   is   independent  of  the  positive weights     (ß   )     in the 

combination.     The  number of  combinations of    x      with positive    ß 

is   finite.     X=  ]i^i[     yields   the  same minimizer as    a  •     Suppose 
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X.Qx     is  minimized  by    x      and    X.Qx     is  also minimized by    x    . 1 H        2 V 

Let  X1  and >.2 eA^ , X^Q = c1 , ^2^=c2 '  't 's a well-known 

result that  [a- c. + (l-ry) c_ ]x  is also minimized by x , where 

0 < Q/ < 1 .  Hence [Q-X, + (l-o')X0]Qx  is minimized by x  and 
-  - 12 ^ 

A^  is convex.  Suppose the sequence   x.Qx ,   ^2^ ^^  

is minimized by x  , where  X, , X- ,... .X, , ■ - .-^X ; X, , X»,... 
|i I 2 t 12 

X..«.-eA    •    Then    c.x   ,   c0x,... ,c^x,...     is  minimized  by    x 
t v \ I t [J,   . 

If     c,    ,   c„,...,c   »...-»c     t^en    ex     is minimized  by    x       since 
I 2 t \x 

both    T    and    z =  ex    are  closed.     Hence    A       is  closed. 
v 

From the definitions  A ' A •  Suppose there exists some 
v 

X     e  An(UA )     •     Then   no     x        is minimized  by    X   Qx   .  which 
V Ll 

V ^ 

contradicts  the compactness  of    T  .     Suppose  some    A       is disjoint. 

Then    A ~ A      is  not  closed;   but  the  union of  closed  sets   is  closed./// 
v 

Suppose that  X   is an element of A  . We must find some Xe/V   which 

will generate x    subject to the conditions of Theorem ^4.  We know that 

X  is the most likely value to use to achieve our aim, but we also know that 

X will not work because we have already tried it.  Consequently, we try some 

XeA 1 such that  i X-X|I  is minimized, considering only those X which 
V 1  1 1 1 

generate    x subject  to the  constraints  of Theorem k. 

Let  us   formalize   the conditions  on  the   new    X   •     Let     E     be   the set of 

columns  of    C     satisfying the conditions  of Theorem k.     For  notational   simplicity 

we drop the  superscript of    X   ;   where  no affix exists we  refer only to the  new 

X    that we are  seeking.     Suppose  that  we  can generate    x       using    XeA  1   •     Then 

the canonical   set  of  equations   is  still   (7'),  although  the  value of    X     is  not 

identical.     Let   the  value of    X       used   to  generate    x    originally  be   in    A 

What can we  say   from  this?    Firstly,   the  solution   is    x      since    x=(B    b,0) 

ß    m 

V 
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Secondly,   since    x'      is optimal     XC^-Q^B" C)>0 .    Thirdly,     XeA    .     But  from 

Theorem 5 we  know that there exists  some    XeA HA  ,   .    Consequently,  this 
v    v 

choice of    X    from    A HA  i     is  possible  and justified.    We can say then that 

(10) XC^-OgB"^)^ 

x>o 

p 
E    >..   =   1 

k=l     k 

and also  (a)  that  there  is at  least one equality  in the  first   row of  (10), 

and further  (b)   that equality corresponds  to a column  in    E   .     In addition we 

have an objective   -- to minimize    E(X, -^iJ*   •    So we have  something that  looks 

like a quadratic  program.     From the optimal ity properties of    x   It   is clear 

that there   is a one  to one correspondence between the columns of    C    and the  rows 

of  (10).     It   follows   that   if column    j      is   in    E    then   row    j   of  the  first 

1ine of   (10)   Is eligible for equal ity.     For  simplicity of notat ion we will 

write that  row    j      Is   In    E  . 

Let  us  simplify   (10)   into a  quadratic  program by  removing the additional 

constraints,   (a)   and   (b): 

(11) min TA\ kV 
subject to RX<0 

x>o 

ö.k=i 

where       R =   -(QC-(LB'1C) 

By inspection the optimal solution is  >.=X , the point from which we started. 

p 
The constraint set has an interesting geometrical interpretation.  In R  all 
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solutions   X     1 ie on the   intersection of the hyperplane    EX.=1    and the nonnegative 

orthant..     A  solution to  (10)   is   found when a  point     X     lies on one of  the 

admissible   feasible    RX=0     (row e  E)  while  remaining as  close  to    X    as  possible, 

if no  such  point  can be  found  then case     (ii)  of Theorem 3  holds.     If    X     lies 

on  the axis  of  the  orthant  a   solution   (in general)  does  not  exist there  since 

A nAv, i      's   not   necessary at   the  boundary of    A   ,   hence a  change of basis   in  (?) 

does  not occur. 

We  set   up  the  system of equations   to solve   (ll)   by Wolfe's method of 

quadratic  programming,  addina  slack variables    c>p   ,   multipliers    TT    and 

complementary  slack variables     v   ,   complementary  to     (X,a)   : 

(12) R i 0 0 0 0 

0 

0 

I 

The  matrix  contains    2(n-m)+p+l     rows and    3(n-m)+2p+l     columns.    We  have 

already established  that  there exists  a   solution   in  nonnegative    X  ,  a   , 

unrestricted    TT    and  zero    v    which   is  optimal   both a  fortiori  and by the Wolfe 

optimality  criterion of     (X,a),v=  0   .     Hence by Gauss-Jordan elimination or 

simplex  phase   1   we make  the   first     n-m+k    columns  basic,   and   immediately obtain 

the  tableau  corresponding  to  the   solution    \=\ 

p- 

R I 

1 0 

-21 0 

lo 0 1 

0 0 0 

0 0 0 

R' -i' i 

r 0 0 

-    — mm                  «4 

X 0   i 

a = 1 

TT -2X 

V . 0 J 

1 Y 1 (s+1 Yl ,s+n-m+p 

(13) 

Y s,s+l 's.s+n-nH-p 

?! 

B2 

•J 

S 
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where s*2(n-m)+p+l 

B are nonnegative values of \ 

B are nonnegative values of a 

3 
B are unrestricted values of TT 

7.  The Computation of X 

We recall in (11) that it is Sufficient for one inequality to be an 

equation, provided its row e E . to yield a solution for X . Suppose row 

jeE , nnd the j   inequality of (10) is an equation.  Then Q.  = 0    and 

v _L.  enters the basis.  From the last row of (12): 
P+J 

TT.    =   V    , . 
J P+J 

a.     and     v  ,.     cannot  simultaneously be   in the basis  hence  the pivot    operation 
J P+J 

entering     v    and expelling    a    must   be on    v   . •     .   .•   •     From Kuhn-Tucker  theory y 3 YP+J.s+p+j 

we obtain that  the multipliers    rr.     are nonpositive,   hence    v .. < 0    (since 
J P+J - 

the  solution will  be  nonoptimal  with   respect   to the Wolfe  algorithm).     Since 

a.>0    before  the pivot  and     v   . .   <0    after the  pivot 
J P+J   - 

v     . .  < 0     . Yp+j ,s+p+j 

From the  arithmetic of  pivot  operations,   referring  to   (13) 

Y, 

Yp+j ,s+p+j 

! .B^..   -    Vj'.s^j     B2 where 
)+J ?+J Yn+;   c+n+: P+J J       J 

.2 

B 
2 ^    B  p-Kj 

P+J Yp+j.s+p+j 
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To maintain   feasibility 0 < B.   <  1 

2 
and 0 < B 

-    k 

We have thus found the conditions by which  -. may leave the basis 

The steps are: 

1) Identify    jeE 

2) El imi na*-«     j » y 
p+j ,s+p+j  > 0 

3)     El iminate     j » B     < 0     or    B    >  1 

2 
k)     Eliminate     j >  B. .   <  0   ,   i V j 

J J 

Those   that  survive   the   test   are   feasible  and we wish to minimize  the 

deviation   from    X   .      It   is   sufficient   to minimize     EJX. -X.|     since  the  expressi 
k    k1 on 

2 
is  monotone with  respect   to    E(X. -A  ) 

We  have  found  values  of    X   ,    if they exist,  which will  make a  new  basis 

in   (ll)  as  desired as  the current   basis.     In order  to precipitate the change we 

replace     X     by    X+e(X-X   )     where     e     is  small   and  positive.     Clearly     e(X-X   ) 

sums  to zero.     Now suppose  another   iteration   is   required.     X    computed  on 

i + 1 
the  first   iteration becomes     X and a  new value  of    X     is desired.     R    will 

of  course  be different   since   it   is  derived  from the    x     ,     We  follow the  exact 

procedure  as   in  the  first   iteration,   forcing  a  basic  solution   in the  first 

n-m+p  columns.     This will   not   be  optimal   since    X      is  excluded  from the   constraint 

set.     Consequently  there  will   be  at   least  one  value  of    a < 0  .     Again  using 

Theorem ^4 we  find  that  value  of     v   ,   if any,  which   satisfies  the conditions  for 

p ivot i ng. 

8.     Termi nat ion 

There  are  three ways  of  terminating the  procedure. 
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Case I.  The decision maker accepts x produced by minimizing X Qx •  Then 

xt+, Mtxt + xJ+,)/(t+i) 

Case   M.    The program can find no    v    to bring   into the basis which  satisfies 

the  pivoting rules.    Then case   ii  of Theorem 3 applies and the  last    x     is the 

best  that  can be provided. 

Vi = (txt-x;+1)/(t+i) 

as   in case   I. 

Case   111.     The decision maker causes cycling  between a   number    > 2    of  solutions. 

This   implies  that    S    does   not  contain an extreme  point  and the  decision  maker 

must   interpolate points of  the cycle    I . 

Xt+1   =  (tx"t + EXJ+1   /  ||?||)/(t+l) 

9-  Numerical Example see figure 5« 

A very simple example is illustrated: 

A constraint set T cC c(? 

-xl + 2x2 £ ^ 

x + l/2x < 6 

2x] - x2 < 4 

yielding a minimum at  (^.M  under 

c x = -x1 

2 
ex- -X- 

X1 = X = (1/2,1/2) 

The  t+1  sequential problem contains T  . c C 



"xl + 2x2 -Li 

x1 + 2x2 < 6 

2xl ~ x2 £ ^ 

The optimal solution is 
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1 0 0 1/5 2/5 

0 1 0 2/5 -1/5 

0 0 1 -3/5 V5 

0 0 0 3/10 1/10 

14/5 

8/5 

18/5 

.n/5. 

producing x = (1V5, 8/5) which is not in S  .We wish to increase at least x, 

and write c!,: = x. > 8/5 . 

e -I  e 
We  compute    d-   - dRB    C       for    x,     and    x 

d^  - d
B

B'}tk = 0  -  [0  1   0] 

d5   - dgB^C5 =  0  -  [0  1   0] 

"1/5 

2/5 

.-3/5. 

2/5 

-1/5 

V5J 

-2/5 

1/5 

Only    x       is permitted   to enter the  basis. 

We 
-1 

calculate     Qß8    c   - ^ 

1 0 0 ' 1/5 2/5- 

0 -1 0 2/5 

.-3/5 

-1/5 

V5. 

0      0 

0      0 

-1/5 

-2/5 

-2/5 

1/5 

ß    m 
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We add slacks (J > 0 yielding ( 11 ) 

min (A 1 -~ )2 + (A -~) 2 
2 

subject to [-1/5 -215 

] Al 

[~] -215 115 0 A2 = 

1 0 (J l 

(J2 

We have seen that only x5 can enter the next basis. x5 is the 

column of c ' so ~ = (2} • We reach the tableau (13); showing y .. 
I J 

RHS: 

-114 114 1120 -3120 A 112 

114 - 114 -112 0 3120 (J 112 
= 

1120 -1 12u -11100 31100 TT 3110 

-3120 3120 31100 -91100 v 1110 

0 0 -1 0 0 

0 0 0 -1 0 

. 1 1 1 -311 0 -1110 0 - 2 - 2 

p=2 , j=2 so we inspect = -91100 

So far a pivot is feasible. 

= 

[
-3 I 2 o]·( 1 1 1 o \ = [ : ] + 1 ~ 
3120 -911oo 1 2 [

-312J] = [1 13] 

3/20 213 

s2 = 3110- (31100) ( -1019) = 113 

So A2 = (113 - £16 , 213 + £16) 

second 

and the 

We re-enter the primal problem with objective min ((-113 + el6x1+(-213-el6)x2) 

and obtain x = (l,512)eS. 



Fig. 5. 

T 
t+l 
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